
The computation of flow and
heat transfer through

square-ended U-bends, using
low-Reynolds-number models

Konstantinos-Stephen P. Nikas
Department of Mechanical Engineering, Laboratory of Aerodynamics,
National Technical University of Athens (NTUA), Athens, Greece

Hector Iacovides
Department of Mechanical, Aerospace and Manufacturing Engineering,

UMIST, Manchester, UK

Keywords Flow measurement, Heat transfer, Turbulent flow, Modelling

Abstract This study is concerned with the computation of turbulent flow and heat transfer in
U-bends of strong curvature. Following the earlier studies within the authors’ group on flows
through round-ended U-bends, here attention is turned to flows through square-ended U-bends.
Flows at two Reynolds numbers have been computed, one at 100,000 and the other at 36,000. In
the heat transfer analysis, the Prandtl number was either 0.72 (air) or, in a further departure from
our earlier studies, 5.9 (water). The turbulence modelling approaches examined, include a
two-layer and a low-Re k-1 model, a two-layer and a low-Re version of the basic differential stress
model (DSM) and a more recently developed, realisable version of the differential stress model that
is free of wall-parameters. For the low-Re effective viscosity model (EVM) and DSMs, an
alternative, recently proposed length-scale correction term, independent of wall distance has also
been tested. Even the simplest model employed – two-layer EVM – reproduces the mean flow
development with reasonable accuracy, suggesting that the mean flow development is mainly
influenced by mean pressure rather than the turbulence field. The heat transfer parameters, on the
other hand, show that only the low-Re DSMs produce reliable Nusselt number predictions for both
Prandtl numbers examined.
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Craft/NYap model
k ¼ turbulent kinetic energy
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P ¼ pressure
Pij ¼ production rate of the

Reynolds stress
Pr ¼ Prandtl number
T, t ¼ mean, fluctuating

temperature
Ui, i ¼ 1; 2; 3 ¼ contravariant velocity

components
uiuj ¼ Reynolds stress tensor
uit ¼ turbulent heat flux
xi,i i ¼ 1; 2; 3 ¼ Cartesian coordinates
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Introduction
Flow and heat transfer through tight square-ended U-bends, shown in Figure 1,
provides an idealised representation of the flow and thermal processes present
in internal cooling passages of gas-turbine blades. In modern gas-turbines,
relatively cold air extracted from the compressor, is used through internal
cooling passages to cool the turbine discs, the nozzle guide vanes and the
turbine blades to maintain the operating temperature of the blades at safe
levels. The flow development and the heat transfer characteristics inside these
cooling passages are complex and highly three-dimensional influenced by the
presence of sharp U-bends, artificial rib-roughness and the rotation of the
blades. For these reasons, flow and heat transfer through such passages have
been the subject of a number of numerical and experimental investigations
such as those of Ekkad and Han (1995), Metzger and Sahm (1986) and Rigby
and Ameri (1996).

In two-dimensional flows through curved channels, the most critical
problem is the modelling of effects of streamline curvature on the turbulence
field. The effects of the streamline curvature on turbulence are caused by the
centrifugal force. They are represented in the turbulence kinetic energy, stress
transport and scale equations by terms involving interaction of different stress
and rate of strain components. Early attempts in predicting the behaviour of
such flows showed that conventional effective viscosity models (EVM) have all
failed to reproduce these curvature effects. As shown by Iacovides and Li
(1993) and Nemouchi (1988), to reproduce the measured mean flow
development the use of second-moment closures becomes necessary.

In three-dimensional flows through curved ducts of moderate curvature, the
main flow feature is the curvature-induced secondary motion. This is driven by
the imbalance between the radial (cross-duct) pressure gradient and
the centrifugal force. At the near-wall regions, due to the low axial velocity,

Figure 1.
Flow geometry
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the centrifugal force is weak and the radial pressure gradient force drives the
fluid towards the outer side of the curved duct. In the duct core, where the axial
velocity is high, the centrifugal force is the dominant one and drives the fluid
towards the outer side of the curved duct. The curvature-induced secondary
motion can thus be reproduced even in computations using EVMs. As the
secondary motion is strongest within the near-wall regions, where the
imbalance between the centrifugal and radial pressure forces is greatest, one
would expect that only turbulence models that resolve the near-wall motion
would be able to reproduce this flow feature correctly. This has been shown to
be the case by the work of Choi et al. (1989), who instead of using the high-Re
turbulence models with the wall-function approximation, adopted a two-layer
approach. This allows the mean flow equations to be integrated up to the wall,
using simple models of near-wall turbulence. Choi et al. (1989) also showed that
replacement of high-Re k-1 in the duct core with an algebraic second-moment
closure resulted in further improvements in the predicted flow field. This
suggests that the effects of turbulence anisotropy, while less critical than in
two-dimensional flows through curved passages, are certainly not negligible.
Iacovides et al. (1996a, b, c) subsequently showed that the introduction of a
realisable, wall-parameter-free, second-moment closure for the core region,
within a two-layer approach, produced marked improvements in the predicted
thermal development.

For U-ducts of strong curvature the streamwise pressure gradients, present
at the bend entry and exit, become strong enough to produce flow separation
along the inner wall of the duct. This dominates the flow development over the
second half of a 1808 bend and in the region immediately after the bend exit. Bo
et al. (1995a, b) and Iacovides et al. (1996a) presented computations of turbulent
flow and heat transfer through a round-ended, square-cross-sectioned U-bend
of a strong curvature ðRc=D ¼ 0:65Þ: The former study demonstrated that in
order to obtain numerically accurate solutions, bounded high-order schemes
had to be employed for the discretisation of the convection of the turbulent
variables (k and 1) as well as of the mean flow variables. The latter study
showed that the starting point of flow separation over the inner wall is more
reliably predicted by models in which the anisotropy of turbulence in the
near-wall sub-layers is also considered. Even with low-Re second-moment
closures, however, flow separation along the inner wall was predicted to start
later than what was found in the measurements.

The question therefore arises as to whether the conclusions reached from the
above numerical studies of round-ended U-bends are also applicable to
square-ended U-bends. As can be seen in Figure 1, square-ended U-bends
introduce two additional complications in comparison to round-ended ones. On
the one hand, there are two sharp 908 corners along the outer wall of the U-bend
which are likely to cause flow separation, and on the other hand the continuous
change in cross-sectional area around the bend gives rise to additional
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streamwise pressure gradients. Moreover, as flow visualization tests carried
out by Iacovides et al. (1999) show, over the second half of the square ended
U-bend, the turbulent flow also becomes unsteady. Large-scale instabilities
were observed, which however die down soon after the bend exit. Further
evidence on flow instabilities are provided in the recent numerical study of
Chung et al. (2003), concerning laminar flow through a U-bend of similar
geometry. The main motivation for that investigation was the internal cooling
of electronic circuits. Chung et al. (2003) found that above a critical Reynolds
number, laminar flow becomes unsteady as it goes through a square-ended
U-bend. In contrast to the experimental findings of Iacovides et al. (1999) on
turbulent flows, by Chung et al. (2003) the numerical study of laminar flows
showed that the large-scale instabilities dominated the flow development in the
region downstream of the bend. The recent emergence of local flow and thermal
data for square-ended U-bends from Ekkad and Han (1995) and Iacovides et al.
(1999), provided the validation data necessary to answer this question and led
to the present numerical study. What distinguishes this study from those
carried out earlier in the field of U-bend flows, is that here, for the first time, we
focus on square-ended U-bends. A further departure from our earlier studies is
that the heat transfer computations are at present carried out for water as well
as for air. The primary objective here is to assess the effectiveness of low-Re
models similar to those we previously applied to flow computations through
round-ended U-bends, while a further objective has been to introduce and
assess the effectiveness of a recently developed realisable second-moment
closure (Craft, 1998).

Theoretical model
The flow computations have been obtained through the solution of
the Reynolds-averaged flow equations, presented here in Cartesian tensor
notation.
Continuity:

›

›xi
ðrUiÞ ¼ 0 ð1Þ

Momentum:

›

›xj
ðrUjUiÞ ¼ 2

›P

›xi
þ

›

›xj
m

›Ui

›xj
þ

›Uj

›xi

� �
2 ruiuj

� �
ð2Þ

Energy:

›

›xj
ðrTÞ ¼

›

›xj

m

Pr

›T

›xj
2 ruit

� �
ð3Þ
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Turbulence modelling
The turbulence models tested are as follows.

(1) A two-layer EVM.

(2) The Launder-Sharma low-Re EVM.

(3) A two-layer basic differential stress model (DSM).

(4) A basic low-Re DSM.

(5) The Craft realisable low-Re DSM.

The first two of the above models are widely used and well known. Their
equations are thus not included in this section. The equations for the less well
known, two layer and also the low-Re basic DSM, which have been employed in
all computations are included. The Craft low-Re DSM is a more recently
developed and more complex closure. The terms representing the redistribution
of turbulence have been derived by imposing realisability conditions, which
also satisfy the two-component limit of turbulence and are of cubic order in
terms of the strain rates. Near-wall damping is provided through both
turbulence Reynolds number and stress invariants. Inhomogeneity parameters
based on the gradients of the turbulent length scale are also introduced to
represent the wall effects on the anisotropy of turbulence and also to provide
the correct wall-limiting values for the dissipation rates of the Reynolds
stresses. The conventional wall-reflection terms that use the wall distance and
the wall-normal direction are thus not needed. This model has been
successfully used to compute a number of test cases, which include channel
flows, free-surface flows and stagnation flows. Inevitably, it leads to a more
complex set of transport equations for the turbulent stresses and the
dissipation rate. Owing to space limitations the equations for this model are not
presented here. Interested readers can refer to Craft (1998).

Effective viscosity models
In both EVM versions, the Reynolds stresses and the turbulent heat fluxes are
obtained from the effective viscosity and effective diffusivity approximations,
respectively.

ruiuj ¼
2

3
kdij 2 mt

›Ui

›xj
þ
›Uj

›xi

� �
ð4Þ

uit ¼ 2
mt

sT

›T

›xi
ð5Þ

This is a widely used approach, popular for its numerical robustness, but
which produces an isotropic turbulent viscosity field. In most flows the
contribution of the normal strain rates to the levels of the normal stresses in
equation (4) is fairly minor. Consequently, the turbulence energy is distributed
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equally in all directions �u21 .
�u22 .

�u23 . ð2=3Þk
� �

: Turbulence is however
anisotropic and in many types of flows, such as flows with streamline
curvature, the mean flow development is sensitive to the anisotropy of
turbulence.

Two-layer k-1/one-equation model. As the above name suggests, in the
fully-turbulent region the standard high-Re version of the k-1 model is used,
while in the near-wall regions a low-Re version of a one-equation model of
k-transport is employed. This approach allows the resolution of the mean flow
across the viscous wall sub-layer without the need to use an excessively fine
near-wall grid.

In high-Re k-1 model, the turbulent viscosity that appears in equations (4)
and (5) is obtained from the turbulent kinetic energy, k, and its dissipation rate.

mt ¼ rcmk
2=1 ð6Þ

The “standard” high-Reynolds-number versions of the transport equations for
k and 1 are used to determine the distributions, of these two variables.

In the near-wall regions the distribution of k is still obtained through the
numerical solution of the high-Re form of the transport equation, but the
dissipation rate, 1, and the turbulent viscosity mt, are obtained from algebraic
expressions, proposed by Wolfshtein (1969), that rely on prescribed length
scales based on the wall distance.

The parameter y* ; Yk1=2=n is the dimensionless wall distance, used to
provide the wall damping of turbulence.

Low-Re k-1 model (Launder and Sharma, 1974). This is an extension of the
high-Re k-1 that can reproduce the wall damping of turbulence and hence can
be used across the viscous sub-layer. Instead of solving a transport equation for
the real dissipation rate 1, we now solve for the “isotropic rate” ~1: This is
related to 1 through the expression

1 ¼ ~1þ 2n
›
ffiffiffi
k

p

›xj

 !2

:

In the fully turbulent core, 1 ¼ ~1: At the wall, ~1 ¼ 0; while 1 remains finite.
A number of damping functions are included, in which the damping parameter
Rt, is the local Reynolds number of turbulence, defined as Rt ; k2=ðn ~1Þ:

Low-Re DSM
The DSM closures employed here are rather simple and empirically derived
extensions to the basic DSM, which relies on the linear redistribution terms and
use the wall-reflection terms. They have evolved from the low-Re algebraic
stress closures (ASM) proposed by Iacovides and Launder (1992) and initially
applied to flow and heat transfer through U-bends of mild curvature. They
were subsequently extended by Iacovides and Toumpanakis (1993) to low-Re
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DSM closures and were initially applied to the computation of turbulent flows
through rotating cavities (Iacovides et al., 1996a, b, c), where they produced
satisfactory predictions. These low-Re DSM closures have also been applied
more recently by Iacovides (1999) and Iacovides and Raisee (2001) to the
computation of flow and heat transfer through ribbed passages, where again
their introduction improved the thermal predictions. The low-Re terms,
constants and damping functions have been determined with reference to
fully-developed pipe flow and have not been changed in any of the subsequent
applications.

Instead of the effective viscosity approximation, equation (4), the turbulent
stresses are obtained through the solution of separate transport equations,
represented by equation (7).

As in the k and 1 transport equations, the transport of the turbulent stresses
due to turbulent mixing is modelled through the effective diffusivity concept.
The term 1ij denotes the dissipation rate of the turbulent stresses which, as
shown in equation (9), is assumed to be isotropic when the flow is fully
turbulent and proportional to the ratio uiuj=k at the wall. The function f1 is zero
when the flow is fully turbulent and one at the wall.

A set of equations for the basic low-Re DSM is as follows.

›

›xj
rUkuiuj
� 	

¼
›

›xk
mþ

mt

sk

� �
›uiuj
›xk

� �
þ Pij 2 r1ij þ wij

2 Hij 2
1

3
Hkkdij

� �
þ J ij ð7Þ

Pij ¼ uiuk
›Uj

›xk
þ ujuk

›Ui

›xk

� �
ð8Þ

1ij ¼
2

3
ð12 f 1Þ1dij þ f 1

uiuk
k

1 ð9Þ

wij ¼ 2c1
1

k
uiuj 2

2

3
kdij

� �
2 c2 Pij 2

2

3
Pkdij

� �
þ fw ww

ij;1 þ ww
ij;2

� �
ð10Þ

ww
ij;1 ¼ 2cw1

1

k
ukumnknmdij 2

3

2
ukuinknj 2

3

2
ukujnkni

� �
k1:5

1clxn


 �
ð11Þ

ww
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1

k
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3

2
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� �
k1:5

1clxn


 �
ð12Þ

where
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wij2 ¼ 2c2 Pij 2
2

3
Pkdij

� �
ð13Þ

Hij ¼ f H
n

k
uiul

›
ffiffiffi
k

p

›xl

›
ffiffiffi
k

p

›xj
þ ujul

›
ffiffiffi
k
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›xl

›
ffiffiffi
k

p

›xi

 !
ð14Þ

J ij ¼ f J k
›Ui

›xj
þ

›Uj

›xi

� �
J ij ð15Þ

uit ¼ 2rcT
k

1
uiuj

›T

›xj
ð16Þ

The term wij, given in equation (10), represents the redistribution of turbulent
energy among the different components of the Reynolds stress tensor due to
fluctuations in the pressure and strain fields. Terms ww

ij1 and ww
ij2; given in

equations (11)-(13), are the conventional wall reflection terms, proposed by
Gibson and Launder (1978), to model the “wall-echo” part of the pressure strain
correlation. They have been devised for the fully turbulent region of a flow over
a plane wall and make use of the wall distance xn and the unit vector normal to
the wall n.

Within the viscous sub-layer the wall reflection terms are damped through
the function fw. Their task within the viscous sub-layer is then performed by
ðHij 2 Hkkdij=3Þ; where Hij is given by equation (14). The contribution of this
term is more extensively discussed by Bo et al. (1995a, b). It represents a
relatively simple way of achieving approximately the correct distribution of the
Reynolds stresses across the viscosity-affected sub-layer. The term Jij, given in
equation (15), increases the sensitivity of the model to the effects of low mean
flow Reynolds number. The turbulent heat fluxes are obtained through the
generalised gradient diffusion hypothesis, given by equation (16).

Simplified (two-layer) DSM closure
In the fully turbulent region, 1 is obtained from the same equation used in the
high-Re k-1model. In the near-wall region, 1 is obtained from the wall distance,
as in the Wolfshtein (1969) model 1 ¼ k3=2=l1; but with:

l1 ¼ 2:55Y ½12 expð20:263y* Þ� ð17Þ

The damping functions that appear in equations (9)-(15) depend on the
dimensionless wall distance y* and have the following expressions:

f 1 ¼ expð2y*=3Þ ð18Þ

fw ¼ ½12 expð20:12y* Þ�½1þ expð20:03y* Þ� ð19Þ
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f J ¼ 0:06 expð2y*=3Þ ð20Þ

f H ¼ ð10:2þ 7:5y* Þexpð2y*=20Þ ð21Þ

Low-Re DSM closure
The dissipation rate equation is the same as the corresponding equation of the
low-Re k-1 model. The damping functions that appear in equations (9)-(15)
depend on the turbulent Reynolds number, Rt, and have the following
expressions:

f 1 ¼ expð2Rt=8Þ ð22Þ

fw ¼ ½12 expð2Rt=20Þ�½12 expð2Rt=100Þ� ð23Þ

f J ¼ 0:06 expð2Rt=8Þ ð24Þ

f H ¼ ð10þ 2:6RtÞexpð2Rt=20Þ ð25Þ

Also fm, which still appears in the stress and 1 transport equations, is obtained
from:

f m ¼ exp½24=ð1þ 0:01RtÞ
2� ð26Þ

As mentioned earlier, the damping functions shown in equations (18)-(26) have
been devised with reference to fully-developed pipe flows and not specifically
for the ribbed passage flows presented in this study.

Length scale correction terms
It is well known that in separated flows, the Launder-Sharma version of the 1
equation returns excessively high levels of near-wall turbulence. To address
this problem Yap (1987) proposed the addition of a correction term, YC, to the
right-hand side of the 1 equation, based on the wall distance, Y.

YC ¼ max 0:83
~12

k

k1:5= ~1

2:55Y
2 1

� �
k1:5= ~1

2:55Y

� �
; 0

� �
ð27Þ

In a recent proposal by Hanjaliç (1996), the wall distance in the above term is
eliminated by using the gradient of the length scale normal to the wall surface.
Here, these ideas are further developed by:

(1) introducing the resultant of the length scale gradient vector, and

(2) also considering the effects of wall damping across the sub-layer.

From Woolfshtein (1969):

l1 ¼ 2:55Y ½12 expð20:263y* Þ� ð28Þ
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Differentiating l1 and then replacing y* by Rt, as proposed by Yap (1987),
produces the following expression for the gradient of the equilibrium length
scale, ðdl1=dY Þ :

ðdl1=dY Þ ¼ cl½12 expð2B1RtÞ� þ B1clRt expð2B1RtÞ ð29Þ

with cl ¼ 2:55 and B1 ¼ 0:1069
From the resultant gradient, Dl, of turbulent length scale, l ¼ k3=2=1;

a correction factor F is defined according to:

Dl ¼ {ðdl=dxjÞðdl=dxjÞ}
1=2 ð30Þ

and

F ¼ ½Dl 2 ðdl1=dY Þ�=cl ð31Þ

A new version of the Yap term can then be developed, NYC of the form:

NYC ¼ max½cYFðF þ 1Þ2r12=k; 0� ð32Þ

Iacovides and Raisee (1999) initially suggested that cY, should have the value of
0.83, as in the original Yap term, for both low-Re k-1 and low-Re DSMs. Craft
(1998) also adopted this term for his realisable DSM, for the low-Re DSM cY is
set to 0.5, while for the low-Re k-1 it is left as 0.83.

The modelling of other constants that appear in the preceding equations
have the values given in Table I.

Numerical aspects
A three-dimensional non-orthogonal finite volume solver, STREAM, has been
employed, developed at UMIST, which employs the Cartesian velocity
decomposition. A collocated grid is used. The SIMPLE algorithm is employed
for the calculation of the pressure field, with the Rhie and Chow (1983) flux
modification. In the case of DSMs, the apparent viscosity concept is used to
prevent numerical oscillations that arise from the explicit presence of the
Reynolds stress gradients in the momentum equations. For the convective
discretisation of all transport equations, a bounded form of the quadratic
upstream interpolation scheme (QUICK), proposed by Iacovides (1999), was
used.

cm sk c1 c2 cw1 cw2 cT sT

0.09 1 1.8 0.6 0.5 0.3 0.32 0.9

Table I.
Turbulence modelling
constants
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Presentation and discussion of results
As shown in Figure 1, the flow geometry is that of a square-ended U-bend of
square cross-section in the straight tangents, with a ratio of 0.15 between the
radius of the inner wall and the duct diameter. The flow domain started three
duct diameters before the bend entry and extended to nine diameters after its
exit. Two grids have been employed, the first consisting of 31 £ 58 grid nodes
over the half cross-section and 104 planes in the streamwise direction and the
second consisting of 45 £ 86 grid nodes over the half cross-section and 104
streamwise planes. As shown in Figure 2(a), the mean and turbulent flow fields
produced by the two grids are practically identical. Figure 2(b) shows that the
differences in the local Nusselt number distributions produced by the two grids
are only minor. It thus appears that the grids used in combination with the

Figure 2.
Comparison of mean
flow field and local

Nusselt number
distributions for grid
dependency reasons
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bounded QUICK scheme ensure that numerical errors do not contaminate the
predictions. Computations have been carried out at two flow Reynolds
numbers, namely 36,000 and 100,000. Heat transfer computations have been
obtained with constant wall heat flux boundary conditions, at Prandtl number
values of 0.72 and 5.9. At Pr ¼ 0:72; all duct walls were heated, while at
Pr ¼ 5:9; only the two flat walls were heated, to be consistent with available
heat transfer data. Fully developed duct flow hydrodynamic and thermal entry
conditions have been prescribed and generated through preliminary
computations.

Comparisons of the mean velocity field along the duct symmetry plane,
shown in Figure 3, indicate that all the turbulence models return a largely
similar mean flow development. The differences between the k-1 and DSM
predictions are smaller than those identified in our earlier studies of
round-ended U-bends (Iacovides et al., 1996a, b, c). This suggests that mean
flow development is mainly influenced by the strong streamwise pressure
gradients caused by the continuous change in cross-sectional area around the
bend. The main flow features present in the measurements are reproduced, but
all models return a narrower than measured separation bubble along the inner
wall. The realisable DSM produces a slower recovery after the bend exit than
the other models. More detailed mean flow comparisons are provided by the
profiles of the streamwise velocity in Figure 4. The failure of all models to
predict the correct size of the separation bubble at the bend exit is clearly
evident, while the differences between the predictions of the realisable DSM
and those of the other models in the first two downstream diameters are also
noticeable. Comparisons further downstream, not shown here, suggest that the
slower downstream recovery produced by the realisable DSM are in contrast to
the measured behaviour.

Figure 3.
Comparison between
computed and measured
mean flow fields along
the duct symmetry plane
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Figure 5 compares the computed development of the secondary motion within
the bend with that inferred from the available measurements. The data show
that the classical two-vortex structure prevails throughout the turn, with the
vortices becoming significantly more intense at the 908 plane, where the
cross-sectional area is narrowest and then weakening somewhat by the 1358
plane. To some extent, at the 1358 plane, the effects of the increase in
cross-sectional area on the secondary motion are offset by the presence of a
sizeable separation bubble along the inner wall. The measurements also show
that the flow within the bend is significantly non-symmetric. As noted earlier,
flow visualisation tests carried out by the experimental investigators (Iacovides
et al., 1999), showed that this is caused by flow instabilities within the bend
which die down after the bend exit. The present computations assume both a
plane of symmetry and steady conditions and consequently cannot reproduce
this phenomenon. At the 45 and 908 planes, all computations reproduce the
two-vortex structure. At the 1358 plane, because the predicted separation

Figure 4.
Comparison between

computed and measured
profiles of the axial
velocity along duct

symmetry plane WWWW
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bubble is smaller than the one observed in the experiment, the computed
secondary motion is noticeably weaker. Moreover, in contrast to the measure-
ments, the computations show that almost over the entire cross-section, the
cross-duct motion is predominantly in the outward direction. This
disappearance, from the predictions, of the two-vortex structure, appears to
be caused by the fact that the thickness of the boundary layer along the flat
walls is suppressed, resulting almost in two-dimensional variation of axial
velocity from the inner to the outer wall. The Craft DSM closure, not included
here, returns a weaker secondary motion than the basic low-Re DSM, which is
consistent with the general slower flow development returned by the Craft
model. The other models, also not shown here, produce mean flow predictions
similar to those of the basic low-Re DSM.

The profiles of the streamwise turbulence intensity, shown in Figure 6,
reveal that all models severely under-predict intensity levels at and
immediately after the bend exit. Within the turn, the EVMs return higher
intensities than the basic DSM closures, while after the turn the situation is
reversed. The realisable Craft model produces intensity distributions similar to
those of the basic DSM, but somewhat of lower levels. One possible explanation
may be that the measured intensities also include the effects of the large-scale
instabilities observed within the turn. Indeed, as noted in the “Introduction”,
the recent numerical work of Chung et al. (2003) on laminar flows provides
further support for this. This suggests that in future, time-dependent
computations should be attempted, using either unsteady Reynolds-averaged
Navier-Stokes (RANS) or detached eddy simulation.

Heat transfer computations on the other hand, such as the ones shown in
Figure 7, for a Prandtl number of 0.72, show greater sensitivity to the

Figure 5.
Comparison between
predicted and measured
cross-duct flow fields
within the turn
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turbulence models employed. The side-averaged Nusselt number
measurements in Figure 6 were obtained at a Reynolds number of 60,000,
while the predicted values were for a Re value of 100,000 and were then scaled
for a value of 60,000 through the Dittus-Böelter formula. All the models
under-predict Nu levels within and after the bend. Not surprisingly, the
two-layer models, especially the two-layer k-1, return the lowest Nu levels.
There is relatively little difference between the low-Re predictions produced
by the two alternative versions of the Yap term, especially for the basic DSM,
with the predictions of the basic DSM marginally closer to the data than those
of the low-Re k-1. The realisable (Craft) DSM while predicting reasonable
Nu levels after the bend, within the bend it severely under-predicts the Nusselt
number.

Comparisons between the measured contours of the local Nusselt number
and those predicted by the basic DSM with the differential version of the Yap
term are shown in Figure 8. The measurements show that the Nusselt number
starts to increase as the fluid enters the turn and a local peak is reached over the
first half of the turn, near the end wall. This must be caused by impingement of
the fluid entering the turn on the end wall. Over the second half of the turn, the

Figure 6.
Comparison between

computed and measured
profiles of the axial

component of turbulence
intensity along

symmetry plane. WWWW
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Figure 7.
Comparisons of the axial
variation of the side
averaged Nusselt
number along the flat
wall. Re ¼ 60,000 and
Pr ¼ 0.72
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Nusselt number reaches a local minimum at the corner between the end and the
outer walls. At the bend exit, the measured Nusselt number is high along the
outer side, where the flow accelerates, and low along the inner side where there
is a separation bubble. Further downstream, the high Nusselt number levels
along the outer side spread over the entire flat wall, while after the first three
downstream diameters the measured Nusselt number starts to fall. Most of
these features are returned by this model and the overall Nusselt number levels
are well predicted. Perhaps the greatest predictive deficiency of the model is its
failure to return the low Nusselt number levels at the downstream corner of the
bend, a feature consistent with the erroneous prediction of the outward motion
at the 1358 plane, identified in Figure 5. Further discrepancies between the
thermal predictions and the corresponding measurements include a slower rise
in Nusselt number at the bend entry, larger regions of high Nusselt number in
the bend and downstream and also a larger region of low Nusselt number along
the inner side at the bend exit.

When the Prandtl number increases, the thickness of the conduction
sub-layer, the thermal equivalent of the viscous sub-layer, are reduced, making
the coefficient of wall heat flux more sensitive to variations in near-wall
turbulence and consequently its prediction more sensitive to the modelling of
near-wall turbulence. The latter is clearly evident in the comparisons of Figure 9
that shows the measured and computed variation of the side-averaged Nusselt
number for Pr ¼ 5:9:The under-prediction of the upstream levels suggests that
the experimental entry conditions were not thermally fully-developed. Within
and downstream of the turn, in contrast to the comparisons at the lower Prandtl
number, the two-layer models, especially the EVMs, return a reasonable
variation, though in the middle of the turn the Nusselt number is
over-predicted. The low-Re EVMs over-predict Nusselt number levels at the
middle of the turn and also show a severe dip at the bend exit which is not
present in the measurements. Both these predictive deficiencies are less severe
in the basic low-Re DSM closures, with the prediction of the DSM closure that
employs the differential form of the Yap term being notably closer to the
measured distribution.

Figure 8.
Comparisons of local
Nusselt number along

the flat wall. Re ¼ 60,000
and Pr ¼ 0.72
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Conclusions
The overall picture that emerges from these comparisons suggests that even
the simplest model employed, two-layer EVM, reproduces the mean flow
development with reasonable accuracy, suggesting that the mean flow
development is mainly influenced by the pressure gradients, rather than the
turbulence field. When commenting on the under-prediction of turbulence
levels within the bend, the flow instabilities and indeed the lack of flow
symmetry reported by the experimentalists within the bend needs to be borne
in mind. The distribution of the local Nusselt number is better predicted for air
ðPr ¼ 0:72Þ than for water ðPr ¼ 5:9Þ: The predictions of Nusselt number are
found to be sensitive to the modelling of both near-wall turbulence and
turbulence anisotropy. Using the variation in side-averaged Nusselt number as

Figure 9.
Comparisons of the axial
variation of the side
averaged Nusselt
number along the flat
wall. Re ¼ 36,000 and
Pr ¼ 5.9
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a guide, for air as the working fluid ðPr ¼ 0:72Þ the low-Re models are superior
to the two-layer models, though the Craft realisable DSM does not result in any
additional improvements in comparison to the basic low-Re DSM. With water
as the working fluid ðPr ¼ 5:9Þ; the average Nu predictions of the two-layer
models move closer to the measurements, while among the low-Re models only
the DSMs, especially with the differential Yap term, return reliable predictions
of the average Nusselt number. It thus appears that only low-Re DSM models
produce reliable Nusselt number predictions for a range of Prandtl numbers
examined. For improvements in heat transfer predictions at higher Prandtl
numbers the present comparisons suggest that the modelling of the turbulence
decay across the viscous sub-layer needs to be further refined.
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